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This paper gives sufficient conditions for the output of 1 /�� noise from reversible Markov chains on finite
state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We
apply simple representations of the covariance function and the spectral density in terms of the eigendecom-
position of the probability transition matrix. The results extend to hidden Markov chains. We generalize the
results for aggregations of AR1-processes of C. W. J. Granger �J. Econometrics 14, 227 �1980��. Given the
eigenvalue function, there is a variety of ways to assign values to the states such that the 1/�� condition is
satisfied. We show that a random walk on a certain state space is complementary to the point process model of
1 /� noise of B. Kaulakys and T. Meskauskas �Phys. Rev. E 58, 7013 �1998��. Passing to a continuous state
space, we construct 1 /�� noise which also has a long memory.
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I. INTRODUCTION

A real-valued stationary time series �g�Xt� , t�Z� is said
to produce 1/�� noise if the spectral density satisfies

f��� �
1

�� , L � � � H , �1�

where �L ,H�� �0,�� is a relatively long interval of frequen-
cies, � is positive and close to 1, and � and � denote
certain asymptotic behaviors, more precisely defined in Sec.
III. The phenomenon has been observed in a wide variety of
fields including astrophysics, electrical engineering, geo-
physics, hydrology, economics, acoustics, medicine, and psy-
chology, with � usually being in the interval �0.5, 1.5� �1–3�.
Even the sound intensity of classical music shows this be-
havior over several decades of frequencies.

The challenge posed for stochastic modelers, then, is to
find a general construction which results in 1/�� noise, and
explain it arising in so many situations. Many of these phe-
nomena can reasonably be viewed as either discrete or con-
tinuous time processes which evolve with memory of only a
limited past. It seems reasonable to think in terms of Markov
chains or Markov processes.

In this paper we formulate, in terms of their eigenstruc-
ture, a general construction of reversible Markov chains
which produce 1/�� noise. The construction provides a basis
for understanding some instances of this phenomenon. As
illustration we construct families of random walks, of re-
newal processes, and of Markov chain Monte Carlo
�MCMC� samplers which produce 1/�� noise. We expect
that the construction is robust in the sense that families
which loosely follow the construction will have nearly 1/��

behavior on a large frequency interval. While not a final
answer to the challenge of explaining the frequent appear-

ance of 1 /�� noise, our construction provides a basis for
understanding that this phenomenon can arise in a variety of
situations from common structural roots.

Among probabilists and statisticians the main focus re-
lated to the phenomenon described by �1� has been on the
construction of so-called long-memory processes �1,4,5�,
characterized by

f��� �
1

�� as � → 0. �2�

This behavior is, however, neither sufficient nor necessary
for relation �1�. Notice that observations and inference re-
garding the spectral density are limited to a finite interval of
frequencies bounded away from zero, where the sampling
frequency constitutes the upper bound, and the length of the
observed time series determines the lower bound; and even
though f��� complies with �2�, it may differ significantly
from 1/�� on the interval of interest, which does not include
zero. On the other hand, unless L is zero, relation �1� does
not force any particular behavior for � in a neighborhood of
zero. Values of ��1 are usually not considered for models
satisfying �2� since these imply nonstationarity �6,7�. Empiri-
cal findings where f��� complies with �1�, but not with �2�
�3� suggest that the focus on �2� may lead attention away
from the actual problem of interest. In this paper we will
focus on stationary Markov chains exhibiting the character-
istic in �1� for �� �0,2�.

Fractional Brownian motion and fractional Gaussian noise
�8� are well-studied models having spectral density propor-
tional to 1/�� over all frequencies. Wavelet-based processes
can produce 1/�� noise up to any accuracy �9�. This is also
the case for the aggregation of relaxation processes �e.g.,
first-order autoregressive �AR1� processes� with an appropri-
ate distribution of time constants. The latter is perhaps the
most frequently proposed explanation for 1 /�� noise �4,10�.
The spectral density of the voltage over an electrical circuit
with certain configurations of resistors and capacitors can be
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explained in this way �3,6�. In the next section, we will show
that a Markov chain may have the same type of spectral
density as an aggregation of relaxation processes.

In this paper we construct processes, which produce 1/��

noise on an arbitrarily long interval in log scale, bounded
away from zero. There seem to be few counterparts to this in
the literature. One other example, is a point process where
the interevent times are given by a Gaussian AR1 time series
and �=1 �11�.

In the physics literature, there are a number of more com-
plex models for which property �1� is claimed �2,12–16�.
One sees that the characteristic in �1� is often given the ge-
neric term 1/ f noise. Surveys of 1 / f phenomena and ideas
are found in �6,7,10�, with some recent results in �17–19�.

Let X be the state space of Xt, and let g :X→R be a
function that assigns real values to the abstract state space.
The one-sided spectral density of a stationary time series
�g�Xt�� is defined as

f��� � lim
N→�

1

N�
	


t=1

N

g�Xt�e−i�t	2

�3�

=
1

�



t=−�

�

C�t�e−i�t, �4�

where �� �0,�� and C�t�=Cov�g�Xs� ,g�Xs+t�� is the station-
ary covariance function. The equivalence of �3� and �4� is the
Wiener-Khinchin theorem. For nonstationary time series, an
extended definition in �6� can be used. The partial sum of
�g�Xt�� does not always strictly possess a spectrum, but in an
extended sense it will have the same spectral density as
�g�Xt�� divided by 2�1−cos����=�2+O��4� �20�. In order to
construct 1 /�� noise for ��0 and �	1, it is therefore suf-
ficient to consider �� �0,2�.

The problem of finding an analytical representation of the
spectral density is one of the main difficulties in the analysis
of 1 /�� noise. An Abelian-Tauberian theorem relating regu-
larly varying tails shows that the long-range dependence
property �2� is equivalent to similar behavior of C�t� as t
→� �21�. But for �1�, the entire function C�t� has to be taken
into consideration. Often C�t� is hard to compute. Some re-
sults have emerged in the setting of point processes, which
are generally easier to handle by �3� �see, e.g., �11��. Here we
present a simple expression for C�t� for a Markov chain on a
finite abstract state space in terms of the eigenvalues and
eigenvectors of the chain and a map which assigns real val-
ues to the abstract states. For a sequence of Markov chains
with increasing state spaces we find conditions on the se-
quence of eigenstructures and maps such that the spectra of
the chains approach 1/�� as exemplified in Sec. IV.

This paper is organized as follows: In Sec. II the covari-
ance function and spectral density are computed using an
eigendecomposition. A sufficient condition for limiting 1/��

behavior is presented in Sec. III and used to generalize the
results of Granger �4�. In Sec. IV we construct some specific
chains satisfying this condition. A random walk in a nonho-
mogeneous environment and a hidden Markov chain satisfy-
ing �1� are constructed by assigning certain nonmonotonic

values to the states. The number of ways to do this increases
geometrically with the number of states. Other types of ran-
dom walk are also shown to exhibit certain 1/�� behaviors.
A Metropolized independence sampler evolving on equidis-
tant, ordered numbers can be extended to satisfy both �1� and
�2�.

II. COVARIANCE FUNCTION AND SPECTRAL DENSITY

A. Eigendecomposition of a probability transition
matrix

Let P be an aperiodic, irreducible m
m transition prob-
ability matrix with linearly independent eigenvectors. Let the
m-vector � be the stationary distribution of P, and let PT be
its conjugate transpose. Then for t=0,1,2,... �22�,

Pt = E�tFT = � + 

k=1

m−1


k
t ekfk

T, �5�

where �ek� and �fk� are the right and left eigenvectors of P
and the columns in E and F, respectively. The eigenvectors
are normalized such that FTE= I. The diagonal matrix �
=diag�
k , k=0, . . . ,m−1� consists of the corresponding ei-
genvalues. The matrix �=limt→� Pt has the stationary dis-
tribution �T on each row, since 
0=1, e0= �1, . . . ,1�T, and
f0=�. The chain is aperiodic if and only if mink 
k�−1.

Let the matrix B�diag���. That P is time reversible
�BP= PTB� is equivalent with F=BE and all 
k being real-
valued. This simplifies the analytical treatment of the spec-
tral density, and in this paper we therefore only consider
reversible chains. This does, however, not exclude
1/��-behavior of nonreversible Markov chains �23�. Ei-
genanalysis of reversible Markov chains is done in, e.g.,
�24–26�. We suppress the dependence on m in the notation
until Sec. III.

B. Covariance function and spectral density

For analyzing the spectral density of a reversible Markov
chain on a finite state space, we use the expression for the
covariance function �6�, given in �27,28�. From this we de-
rive the spectral density �7�, which also appears in �29�. We
regard the initial state space as abstract.

Lemma 1. Assume that an aperiodic, irreducible Markov
chain �Xt� has a probability transition matrix P with right and
left eigenvectors ek and fk, respectively, and eigenvalues 
k,
k=0, . . . ,m−1, where m is the number of states in the state
space. Let g be any vector assigning real values to the states.
Then

1. �g�Xt�� has the covariance function

C�t� = 

k=1

m−1

ak
k
�t�. �6�

2. �g�Xt�� has the spectral density
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f��� =
1

�


k=1

m−1
ak�1 − 
k

2�
1 + 
k

2 − 2
k cos���
, �7�

where ak��gTBek��fk
Tg�. The matrix B is related to the chain

as above.
Similar results for Markov processes on finite state spaces

are presented in �28� and for Markov chains on continuous
state spaces in �30�. Note that when all the eigenvalues 
k are
real, each term in �6� is equal to the covariance function of
an AR1-process with rate 
k and stationary variance ak. Each
term in �7� is the spectral density of the corresponding AR1
process �see Sec. III�.

In Sec. III we show that it is the relation between �ak� and
�
k� which determines whether a Markov chain produces
1/�� noise. The chain �Xt� evolves on an abstract state
space, and we may choose g to be a map to the ordered
natural numbers. There is a variety of ways to choose g,
which yields a particular sequence �ak�k=1

m−1 in �6� and �7�. We
can, e.g., construct g by taking a sequence �bk�k=0

m−1 of real
numbers and then set

g = 

k=0

m−1

bkek. �8�

Then ak= �gTBek�2=bk
2 if the Markov chain is reversible.

Hence there are more than 2m−1 ways to choose �bk�k=0
m−1 in

order to obtain a desired sequence �ak�k=1
m−1, since the sign of

bk does not matter, and b0 can be chosen freely.

C. Hidden Markov chains

A hidden Markov chain is a pair of processes �Xt ,Yt�,
where �Xt� is an unobserved Markov chain and �Yt� is a
Markov chain conditionally on �Xt�. For us the observed

chain is �g̃�Yt��, where the state space X̃ of Yt consists of

n�2 different states and the function g̃ : X̃→R assigns real

values to X̃. Here we restrict to the case where, given Xt, Yt
is generated by an m
n probability transition matrix Q,
such that all Yt are independent given �Xt�. We have the
following result:

Lemma 2. Let �g̃�Y�t� denote the observed values of a
hidden version of the Markov chain �Xt� in Lemma 1. Let Q
be an m
n probability transition matrix such that

Q�x,y� = Pr��Yt = y�Xt = x� .

Further let g̃ be an n vector which assigns values to all the
states in the state space of Yt. Then the covariance function
and spectral density of �g̃�Yt�� are given by �6� and �7�, re-
spectively, with

ak � �g̃TQTBek��fk
TQg̃� .

Notice that when Xt is a reversible Markov chain, ak
= �ek

TBQg̃�2 for the hidden chain.

III. SUFFICIENT CONDITION FOR 1/�� NOISE

In this section we will show for a sequence of Markov
chains �Xt

m� that if there is an appropriate relationship be-

tween �ak,m� and �
k,m�, then the sequence will produce 1/��

noise, that is, the spectral densities are asymptotically pro-
portional to 1/�� on long intervals in log scale. We first
define exactly what we mean by these words.

Definition 1. Let �hm���� be a sequence of continuous
functions and ��Lm ,Hm�� an associated sequence of intervals.
Let ���� be a continuous function. We say hm��� is asymp-
totically proportional in log-scale to ���� on the interval
�Lm ,Hm�, and write

hm��� � ���� for Lm � � � Hm,

if when Lm /Hm→0, there exists a sequence �cm� of positive
real numbers such that

lim
m→�

	 cmhm��m�
���m�

− 1	 = 0

for any sequence ��m�, which satisfies Lm /�m→0 and
Hm /�m→�.

If, e.g., Lm=1/m2 and Hm=1/m, then cmhm��m� can get
arbitrarily close to ���m� both for ��m� converging to zero
almost as fast as �Lm�, and for ��m� converging almost as
slow as �Hm�. This is also true for those ��m� in between,
resulting in an arbitrarily long interval in log-scale, contained
in the interval �log�Lm� , log�Hm��.

The common definition of asymptotic behavior as �→0
is that h��� /����→1, written as �2� in �31�. Definition 1
extends to this definition when Lm�0, Hm�1, and
cmhm����h���. Notice that when Lm�0, the functions
hm��� are not necessarily asymptotic to ���� as m→� and
�→0, but may have this asymptotic property in m only on
an � interval bounded away from zero. This is an important
distinction in view of the fact that total power must be finite
in examples, and other issues pointed out in the Introduction.
We allow the proportionality constants cm because we are
interested in the shape of hm���, not its level.

As an example where Definition 1 holds, consider a se-
quence of AR1-processes, given by

Xt
m = �mXt−1

m + �t, �9�

where all �t are independent and identically distributed with
E��t�=0, Var��t�=�2, and where ��m� is a sequence of num-
bers in �0, 1�. The spectral densities of a sequence of AR1-
processes have the properties

fm
AR1��� =

�2

�1 − �m�2 + 2�m�1 − cos����

� �1, 0 � � � 1 − �m

1

�2 , 1 − �m � � � 1. 
 �10�

The conditions of Definition 1 will be fulfilled in the first
statement in �10� with ����=�0=1 if �m / �1−�m�→0, and
if we choose cm=�2 / �1−�m�2. The conditions of Definition
1 will be fulfilled in the second statement in �10� with
����=1/�2 if �1−�m� /�m→0 and �m→0, and if we
choose cm=�2.

Definition 2. A sequence of time series is said to produce
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1/�� noise for Lm���Hm, if the spectral densities
fm����1/�� for Lm���Hm. When we speak of con-
structing a 1/�� process, or of a Markov chain producing a
1/�� noise, we mean that we construct such a sequence of
time series.

A. Constructing 1/�� finite state Markov chains

The relationship between �ak,m� and �
k,m� which yields
1/�� noise can be deduced heuristically by setting ak,m so
that each term in the sum in the covariance function equals
the function 1/�� at �= �1−
k,m�. At this point the term
changes from 1/�0 behavior to 1/�2 behavior as in �10�. We
get that

ak,m�1 − 
k,m
2 �

�1 − 
k,m�2 + 2
k,m�1 − cos�1 − 
k,m��
=

1

�1 − 
k,m�� ,

which, for 
k,m close to 1, implies that

ak,m � �1 − 
k,m�1−�. �11�

If one plots the spectral density of a sum of AR1-processes
using the rule-of-thumb in �11�, one observes 1/�� behavior
over several decades in log-log-scale for relatively small m
�m�3�. For m→�, we may combine �11� with the assump-
tion that log�1−
k,m� is equidistant and treat the spectral den-
sity of the Markov chain as a Riemann-sum. We then obtain
the following result.

Theorem 1. Let Xt
m be a sequence of Markov chains as in

Lemma 1. Let g be a vector assigning real values to the
states, and let �ak,m� be the corresponding coefficients ap-
pearing in Lemma 1.

Let Lm�1−
1,m, Hm�1−
m−1,m, and �� �0,2�. Assume
there exist continuous functions a�x� and 
�x� for x� �0,1�,
and a sequence �Am�, such that ak,m=Ama�k /m� and 
k,m

=
�k /m�. Assume that 
�x� is invertible and analytic at x
=0, and that 
�0�=1.

Assume that there exists a constant C, such that

lim
x→0

a�x��1 − 
�x���

�
��x��
= C , �12�

and assume that a�x��1+
�x���1−
�x��� / �
��x�� is bounded
for x� �0,1�.

Then the spectral densities, given by �7�, satisfy

fm��� � �
1, for 0 � � � Lm

1

�� , for Lm � � � Hm

1

�2 , for Hm � � � 1. 

In order to obtain examples where Theorem 1 holds, the

main challenge is to satisfy �12�. If, for instance,

a�x� =
�
��x��

�1 − 
�x��� , �13�

the condition in �12� is satisfied. Notice that we allow nega-
tive eigenvalues. However, the terms in �7� with negative

eigenvalues are increasing in �, and this might imply that the
1/�� behavior can be observed only for very small �.

In Sec. IV we will use these results to construct a variety
of Markov chains producing 1/�� noise.

B. Aggregation of AR1-processes

Theorem 1 can be used to generalize a result of Granger
for aggregations of independent AR1-processes �4�. For con-
venience we let the coefficients �� �0,1� in the AR1-
processes in �9� be independent with density h���. Consider
the sequence of processes formed by aggregation of many
such AR1-processes with coefficients �i, and independent
�t’s with equal variances,

Yt
n =

1

n


i=1

n

Xt
i. �14�

Granger let the coefficients �i follow a beta-distribution on
�0, 1�. He indicated that the shape of the distribution of the �i
is important for his result only near �=1. His result is
equivalent to the limiting spectral density, as n increases,
being asymptotic to 1/�� as �→0 for �� �0,1�. The fol-
lowing Corollary to Theorem 1 shows a sufficient condition
on h for this property to hold.

Corollary 1. Consider the sequence of aggregated AR1-
processes in �14�. Let h��� be the probability density of the
coefficients, and let �� �0,1�. If there exists a constant C
such that

lim
�→1

h���
�1 − ��1−� = C , �15�

then the limiting spectral density f����1/�� for �→0.
It is straightforward to verify that the parameters in the

beta distribution can be chosen to satisfy �15�. However, if
��1, the resulting process has infinite variance, and the
spectral density is not defined.

A version of Theorem 1, where the asymptotic behavior
holds on intervals which may be bounded away from 0, also
holds for this example. Note that this result is distinct from
the previous one, neither being an extension of the other.

Corollary 2. Consider the sequence of aggregated AR1-
processes in �14�. Let �� �0,2�, and let the function h���
satisfy �15�. Assume that the probability density of the coef-
ficients at stage n is proportional to h on the support
��n

min,�n
max�� �0,1�. Then the spectral densities

fn��� � �
1, for 0 � � � 1 − �n

max

1

�� , for 1 − �n
max � � � 1 − �n

min

1

�2 , for 1 − �n
min � � � 1. 


Note that the probability density of the coefficients in
Corollary 2 depends on n.
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IV. CONSTRUCTIONS OF 1/�� NOISE

In this section we will present several constructions of
1 /�� processes. In Sec. IV A this is done for �� �0,2� by
designing the state space g according to the eigenvalue func-
tion of a given transition probability matrix. The chain is
characterized by having trajectories with many relatively
small steps and intermittent larger steps coming in bursts,
which is common for many 1/�� phenomena. In Sec. IV B
we show that a random walk on a certain state space is
complementary to the point process model of 1 /� noise of
B. Kaulakys and T. Meskauskas �11�. In Sec. IV C we inves-
tigate a finite state version of the return times to a central
state of a random walk ��=0.5�, and in Sec. IV D we show
how the boundary conditions of a random walk influence the
spectrum ��=1.5�. In Sec. IV E we construct a Metropolized
independence sampler, which produces 1/�� noise
��� �0,2�� while evolving on an ordinary state space of
equidistant ordered natural numbers. We also construct the
limit process on a continuous state space. All our examples
are reversible Markov chains.

A. Random walk in a nonhomogeneous environment

In this section we will construct 1 /�� noise by consider-
ing reversible Markov chains with known eigendecomposi-
tions. We satisfy the main condition in Theorem 1 by assign-
ing values to the state space according to �8�.

Brownian motion has spectrum 1/�2, and certain random
walks exhibit similar behavior. Both exact and approximate
eigendecompositions of some random walks on finite state
spaces are available. Spitzer �32� presents explicit, exact, ei-
genvalue analysis for a class of random walks with absorbing
boundaries, and results are also available for analogous ma-
trices in two and three dimensions �33�.

Feller �22� obtains exact eigeninformation for general cy-
clical matrices and a class of nearest-neighbor random walks
where the probabilities of moving to each of the neighbors
can be different. We treat one special case from each of these
two classes, and they are called symmetric random walks
with reflecting and cyclical boundaries, respectively. Let the
respective m
m transition probability matrices be defined
by

PRW = �
1

2

1

2
0 ¯ 0 0

1

2
0

1

2
¯ 0 0

� � � �

0 0 0 ¯ 0
1

2

0 0 0 ¯

1

2

1

2

� , �16�

PCyc = �
0

1

2
0 ¯ 0

1

2

1

2
0

1

2
¯ 0 0

� � � �

0 0 0 ¯ 0
1

2

1

2
0 0 ¯

1

2
0

� .

Lemma 3. The eigenvalues, eigenvectors, and stationary
laws of the transition probability matrices in �16�, and the
coefficients in Lemma 1 for g= �1,2 , . . . ,m�T are given by


k,m
RW = cos� k�

m
�, 
k,m

Cyc = cos�2�k

m
� ,

ek,m
RW�x� = �2 cos� k�

m
�x − 0.5��, ek,m

Cyc�x� = ei�2�kx/1�,

�17�

�m
RW�x� =

1

m
, �m

Cyc�x� =
1

m
,

ak,m
RW =�

cos2��k/2m�
2m2 sin4��k/2m�

, k odd

ak,m
Cyc =

1

4 sin2��k
m �

0 k even


�18�

for k=1, . . . ,m−1 and x=1, . . . ,m.
The eigeninformation for simple random walks with re-

flecting elastic boundaries and approximate eigeninformation
for random walks with discretized Gaussian increments are
presented in �34�.

The eigenvalues of PRW can be represented as values of a
continuous function, 
k,m

RW=
RW�k /m�, where


RW�x� = cos��x� . �19�

In order to obtain 1/�� noise, it is sufficient that a�x� in
Theorem 1 satisfies, e.g., �13�, which for 
�x��
RW�x� be-
comes

a�x� =
� sin��x�

�1 − cos��x��� , �20�

with coefficients ak,m=a�k /m�=O��k /m�1−2��, k=1, . . . ,m
−1.

If we were to choose g= �1,2 , . . . ,m�T, the coefficients
ak,m

RW in �18� would be O��k /m�−4� for odd k. This is a much
faster decrease than prescribed by �20�, and the first term in
the spectral density in �7� dominates. Hence fm��� with this
choice of g behaves approximately like the spectral density
of the AR1-process in �10� with �m=
1,m

RW and �=2. This is
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not unexpected, since our random walks with far-off reflect-
ing boundaries have a strong similarity to Brownian motion.

Nevertheless, by assigning appropriate values to the state
space, the desired ak,m sequence, given from �20�, can be
obtained:

Proposition 1. Consider a sequence of random walks de-
fined by the transition probability matrix PRW in �15� with
the eigeninformation �
k,m

RW� and �ek,m
RW� given in Lemma 3.

Let the values assigned to the state space be given by

g = 

k=0

m−1

bk,mek,m
RW,

where bk,m is chosen such that bk,m
2 =a�k /m�, k=1, . . . ,m−1,

and b0,m can be chosen freely. a�x� is given in �20� for some
�� �0,2�. Then ak,m=a�k /m�, and the sequence of chains
produces 1/�� noise for �1−
1,m

RW����1.
The bk,m are determined only up to sign, so many choices,

2m of them, are possible. The spectral density and a typical
sample path are presented in Fig. 1 for one such choice of g,
with bk,m=��a�k /m��, �=1, and a�x� given in �20�. For this
choice

g�x� = �2�

k=1

m−1
sin��k/m�

1 − cos��k/m�
cos� k�

m
�x − 0.5�� , �21�

for x=1, . . . ,m.
There are at least two possible interpretations of the struc-

ture of g. First the random walk may be simple, but some
nonhomogeneous environment is observed instead of the po-
sition. Another view is that it is the position that is measured,
but the step-size depends on the current state. This observa-
tion seems to be relevant for the discussion in �15� where it
is suggested that a random walk in a random environment
might produce 1/�� noise.

Notice that one can write conditions corresponding to �20�
for PCyc and for the discretized Gaussian random walks de-
scribed in �34�.

B. Correspondence with point process model of 1 /� noise

In the point process model of 1 /� noise of Kaulakys and
Meskauskas the interevent times are given by a Gaussian
AR1 time series with very long relaxation times �11,17�. At
each event the process takes the same value.

Heuristically, a corresponding time series could arise in a
model where the interevent times are equal and the process
takes values equal to Xt=1/�Yt where Yt is an AR1 time
series corresponding to the one in �11�. In this way, long
interevents times are converted to small process values. The
power spectral density is derived from the covariance func-
tion, which is a second order functional of the signal values.
The square root is introduced so that the units in which
power is measured are the same as for the point process.

A 1/� model according to these heuristics can be con-
structed by letting the underlying process, Yt, be a random
walk with reflecting boundaries, with the eigendecomposi-
tion described in Sec. IV A. This random walk behaves

similarly to an AR1 time series as both are stationary pro-
cesses with strong similarity to Brownian motion. Let the
map g be defined by g�x�=1/�x, where g is a function of the
underlying process. According to Lemma 3,
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FIG. 1. �a� Values assigned to the states of a random walk ac-
cording to Proposition 1 with positive bk,m’s. The state space is of
size m=50. �b� Log-log plot of the spectral density of the random
walk in �a�. The straight line has slope −1. �c� Sample path of the
chain.
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ak = �gTBek�2

= 	�2

m


y=1

m
1
�y

cos� k�

m
�y − 0.5��	2

� 	�2�
0

� 1
�y

cos��xy�dy	2

= 	�2 cos�x/4�
�x

	2

� a�x� , �22�

where x�k /m for k=1, . . . ,m−1. The last equality is the
Fourier cosine transform of 1/�y. With the choice of a�x� in
�22�, �12� in Theorem 1 holds with �=1:

a�x��1 − 
RW�x��

�
RW��x��
=

2 cos2�x/4�
�x�

�1 − cos��x��
��sin��x��

→
x→0

1.

The resulting spectral density is presented in Fig. 2�a�.
A 1/� model which is very similar to these heuristics was

also constructed in Sec. IV A. The constructed process took
values given by g in �21�, and it can be shown that this
function is approximately proportional to 1/�x for large m.

This indicates that the heuristic explanation can be ap-
plied and establishes a connection between the point process
and the random walk time series, both producing 1/� noise.

C. Renewal process

In this section we consider the renewal process of returns
to a state i�. Let �Xt

m� be the random walk defined by the
transition probability matrix PRW, and let

g�i� = �1, i = i�

0, i = 1,...,i� − 1, i� + 1,...,m ,
� �23�

i.e., g�Xt
�m��=1 every time the chain occupies state i�, and is

zero in all other states. It is well-known that the spectrum of
the return times to a central value of a symmetric random
walk process with finite variance steps in one dimension,
without boundaries, has a regularly varying tail with f���
�1/�0.5 as �→0��35�, p. 431�.

Let m be odd. From the eigenvectors of PRW in �17�, it
follows that for i�= �m+1� /2

ak,m
RW�

=
2

m2cos2��k

2
� = � 2

m2 , k = 2,4, . . . ,m − 2

0, k = 1,3, . . . ,m − 1



for large m. Considering only the even terms of ak,m
RW�

, we
may choose a�x��2 and Am=1/m2 in Theorem 1. Then �12�
holds with �=0.5:

a�x��1 − 
RW�x��0.5

�
RW��x��
=

2�1 − cos��x��0.5

��sin��x��
→
x→0�2

�
. �24�

Proposition 2. Consider a sequence of renewal processes
with an odd number of states m, which take the value 1 when
a random walk with transition matrix PRW in �16� occupies
state number �m+1� /2 and are zero elsewhere. The sequence

produces 1/�0.5 noise for �1−
1,m
RW����1, where the ei-

genvalues �
1,m
RW� are given in Lemma 3. The spectral density

is presented in Fig. 2�b� for m=151.

D. Cyclical random walk

The boundary conditions of a random walk may have sig-
nificant influence on the spectral density, as pointed out in
�33�. When g= �1, . . . ,m�T, the random walk with reflecting
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FIG. 2. �a� Log-log plot of the spectral density of the random
walk in Sec. IV B with g�x�=1/�x. The state space is of size m
=400. �b� Log-log plot of the spectral density of the return times of
a random walk in Proposition 2. The state space is of size m=151.
�c� Log-log plot of the spectral density of the cyclical random walk
in Proposition 3, on a state space of size m=151.
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barriers given by PRW exhibits 1 /�2 behavior, as pointed out
before Proposition 1. Here, we show that a cyclical random
walk with transition matrix PCyc exhibits 1 /�1.5 behavior.

The eigenvalues of PCyc are 
k,m
Cyc=
Cyc�k /m�, where


Cyc�x� = cos�2�x� .

If g= �1,2 , . . . ,m�T, the coefficients �ak,m
Cyc� are given in �18�.

We see that �12� holds with aCyc�x�=1/4 sin2��x�, Am�1,
and �=1.5:

aCyc�x��1 − 
Cyc�x��1.5

�
Cyc��x��
=

1

4 sin2��x�
�1 − cos�2�x��1.5

2��sin�2�x��

→
x→0 1

4�2�
. �25�

Proposition 3. Consider a sequence of cyclical random
walks with transition probability matrices PCyc in �16�, and
eigenvalues �
k,m

Cyc� given in Lemma 3. When g= �1, . . . ,m�T,
the sequence produces 1/�1.5 noise for �1−
1,m

Cyc����1.
The spectral density is presented in Fig. 2�c� for m=151.

E. Metropolized independence sampler

The Metropolized independence sampler �MIS� is a
simple version of the Metropolis-Hastings algorithm. Fol-
lowing �26�, we let the m vector q be a proposal distribution

and order the states such that
��1�

q�1� �
��2�

q�2� � ¯ �
��m�

q�m� , where

� is the desired stationary distribution. The m
m transition
probability matrix of the MIS is given by

PMIS�x,y� =�
q�y� , y 	 x

q�X � x� −
q�x�
��x�

��X � x� , y = x

��y�
q�x�
��x�

, y � x .

If the stationary distribution � is uniform, then for any pro-
posal distribution, q, states with higher values are less stable.
That is, the probability of remaining in a state x decreases
with increasing x; but given that a move occurs, the prob-
ability of taking a big leap is higher the more stable x is.

Assume that the stationary distribution � is uniform, the
proposal distribution q is strictly increasing, and that gT

= �1, . . . ,m� /m. Applying the eigendecomposition of a MIS
in �26�, we have


k,m
MIS = 1 − q�X � k� − q�k��m − k� , �26�

ak,m
MIS =

�m − k��m − k + 1�
4m3 , �27�

for k=1, . . . ,m−1. If �
k,m
MIS�k=1

m−1 is a given sequence of eigen-
values, we see from �26� that a corresponding proposal dis-
tribution, q, will satisfy the iterative sequence of equations:

q�k� =
1

m − k + 1
�1 − 
k,m

MIS − 

j=1

k−1

q�j�� , �28�

for k=1, . . . ,m, where 
m,m
MIS�0. This enables us to design a

MIS with any desired sequence of decreasing positive eigen-
values.

From �27�, ak,m
MIS��m−k�2 /4m3 for large m, such that we

may choose aMIS�x�= �1−x�2 /4 and Am=1/m in Theorem 1.
In order to satisfy �12� and obtain 1/�� noise, it is sufficient
to let 
�x� be the solution of aMIS�x�=C�
��x�� / �1−
�x���.
Then


MIS1�x� = �1 − �1 − �1 − �1 − 
��1−���1 − x�3�1/�1−��

1 − �1 − 
���1 − x�3 �
�29�

for ��1 and �=1, respectively. A MIS with a sequence of
eigenvalues taking the values of this function can
be constructed by choosing q as in �28�, with 
k,m

MIS

=
MIS1�1− �m−k� / �m−1��, such that 
1,m
MIS=
�=
MIS1�0�.
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FIG. 3. �a� Log-log plot of the spectral density of a
Metropolized independence sampler �MIS2� on a state space of size
m=15. The eigenvalues are given by �30�, with log�1−
1,15�
=log�1−0.9999�=−9.21, and g= �1, . . . ,m� /m. The straight line has
slope −1. �b� Sample path of the chain.
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Another way to satisfy �12� of Theorem 1 is to let 
�x� be
the solution of aMIS�x�=C�
��x�� / ��1−
�x����1+
�x���. For
�=1 we have


MIS2�x� = tanh��tanh−1�
����1 − x�3� . �30�

q can be constructed in the same manner as for 
MIS1�x�.
We construct the eigenvalue sequences such that


MIS1�1�=0=
MIS2�1�, but other, positive, values are pos-
sible. Figure 3 illustrates the result for MIS2 with m=15. The
spectrum clearly exhibits 1 /� behavior for a wide range of
log��� with change in behavior near �=1−
1,15. However,
strictly speaking, Theorem 1 cannot be applied since �29�
and �30� are well-defined only for 
MIS1�0�=
�=
MIS2�0�
	1.

A limit chain can be constructed for a sequence of MIS
chains obtained by choosing the eigenvalues according to

�29� or �30�. Let the range of gT be �1,2 , . . . ,m� /m. The
limiting state space can be taken as the interval �0, 1�. The
probability densities q�x� and ��x� replace q and �, respec-
tively in a corresponding algorithm: A new proposal Yt+1
from q is accepted as Xt+1 with probability
min�1,��Yt+1�q�Xt� /��Xt�q�Yt+1��, while Xt+1=Xt elsewhere.

Set k= �x�m−1�� for x� �0,1� and let m→� in �26�. By
differentiating �26�, the limiting relation between q and
�
k,m

MIS� becomes

dq

dx
=

− 1

�1 − x�
d
MIS

dx
, �31�

with initial condition q�0�=1−
MIS�0�. The desired limiting
eigenvalue functions in �29� and �30� are obtained if q�x� is
either of the probability densities

qMIS1�x� = ��1 − 
�� + �
0

x 3�1

1 − �
�1 − y��1 − �1�1 − y�3��/�1−��dy , � � 1

�1 − 
�� − �
0

x

3�2�1 − y�e�2�1 − y�3
dy , � = 1 
 �32�

or

qMIS2�x� = �1 − 
�� + �
0

x

3�3�1 − y�sech2��3�1 − y�3�dy ,

�33�

respectively, where �1=1− �1−
��1−�, �2=log�1−
��, and
�3=tanh−1�
��.

Proposition 4. Consider a sequence of MIS chains with
uniform stationary density ��x� on the continuous state space
�0, 1�. Let the proposal densities be given by either �32� or
�33�, with �� �0,2� and �=1, respectively, and 
�=
n

�. Then
the MIS sequence produces 1/�� noise for 1−
n

����1.
Notice that if 
n

��1, qMIS1�x� and qMIS2�x� become degen-
erate when ��1, but if �	1, the densities exist and the
limiting spectral densities are asymptotically proportional to
1/�� as �→0.

V. DISCUSSION

As we mentioned in the Introduction, 1 /�� noise is ob-
served in many contexts. There have been a number of at-
tempts to explain the generality of this phenomenon, and we
have cited several of these in our bibliography. None has
been sufficiently general to cover the broad range of contexts
where 1/�� noise is seen. This paper considerably broadens
the scope of possible applications, as we have indicated by
various examples. However, we have not attempted here to
describe how our results apply in data contexts where 1/��

noise is observed. This will be a large additional challenge.
For example 1/�� noise is observed in membrane channel
currents, and synthetic channels, nonopores, have been cre-
ated to enable measurements which are impossible to obtain
in biological materials �36�. It is found �36� that alternation
between open and closed states in voltage-gated potassium
channels can produce a process with a striking 1/�� power
spectral density. Although this data may have a non-Markov
character, as suggested in �36�, our results indicate that a
Markov model might well explain this property of the data.
However, we will not attempt to formulate the details here.

This paper has been about discrete time processes. How-
ever, consider a continuous time process on discrete state
space, defined by a probability rate matrix R. Let

R =
2

�
�P − I� ,

where P is a probability transition matrix with zero diagonal,
� is a time constant, and the eigenvalues of R, �k,m=2�
k,m

−1� /� are negative if �
k,m� are real. R and P have the same
eigenvectors. For continuous time processes, Reynolds �28�
presents the covariance function,

C�t� = 

k=1

m−1

ake
t�k,m,

and the spectral density for continuous time processes is
given by
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fm��� =
1

�


k=1

m−1

ak,m
− �k,m

�k,m
2 + �2 , � � �0,�� . �34�

As with the discrete case, we can approximate this with an
integral, but the cosine-term in the discrete time expression
disappears, and the conditions for 1 /��-behavior are simpler
to obtain. This is shown heuristically for aggregation of re-
laxation processes in, e.g., �7�. Formally, for finite state Mar-
kov chains, we may let a�x� be as in Theorem 1, and assume
that �k,m=��k /m�, where ��x� is a continuously differen-
tiable real function. If there exists a constant C such that

a�x� =
C����x��
�− ��x��� ,

for �� �0,2�, then �34� can be treated as a Rieman sum, such
that

fm��� �
1

��

1

�
�

−�1,m/�

−�m−1,m/� y1−�

y2 + 1
dy

��
1 for 0 � � � − �1,m,

1

�� for − �1,m � � � − �m−1,m

1

�2 for − �m−1,m � � � � .

,

Since we can tune the parameter �, the interval of
1 /��-behavior can be stretched in both directions to 0 and �.

The work of P. E. Greenwood was supported by NSERC
Canada. The collaboration was made possible due to the gen-
erous hospitality of Arizona State University and Stockholm
University.

APPENDIX A: PROOFS

Proof of Lemmas 1 and 2. At equilibrium

Cov��g�X0�,g�Xt�� = 

x



y

g�x�g�y���x�Pt�x,y�

− 

x

g�x���x�

y

g�y���y�

= gTBPtg − gT��Tg = gTB�Pt − ��g

= gTB�

k=1

m−1


k
t ekfk

T�g = 

k=1

m−1

ak
k
t , �A1�

where ak= �gTBek��fk
Tg�, and g is an m vector that assigns real

values to the states in the abstract state space. We use that
B�=B1�T=��T in the third line, and the eigendecomposi-
tion �5� in the fourth line. Here, 1��1, . . . ,1�T. The spectral
density �7� is now easily found by taking the Fourier trans-
form of each of the terms in Eq. �A1�. Lemma 2 is proved
along the same lines.

Proof of Theorem 1. For large m, the spectral density
fm��� in �7� is near to an integral:

fm��� =
1

�


k=1

m−1
ak,m�1 − 
k,m

2 �
1 + 
k,m

2 − 2
k,m cos���

=
1

�


k=1

m−1
mak,m�1 − 
k,m

2 �
�1 − 
k,m�2 + 2
k,m�1 − cos����

1

m

=
1

�


k=1

m−1
mAma� k

m��1 − 
2� k
m��

�1 − 
� k
m��2 + 2
� k

m��1 − cos����
1

m

�
1

�
�

1/m

�m−1�/2 mAma�x��1 − 
2�x��
�1 − 
�x��2 + 2
�x��1 − cos����

dx

� f̃m��� . �A2�

We first show that f̃m��� is asymptotically proportional in
log scale to 1/�� on the interval �Lm ,Hm� �see Definition 1�.
Suppose ��m� is a sequence such that Lm /�m→0 and
Hm /�m→�. Set Dm�x�=mAma�x��1−
�x����1
+
�x�� / �
��x��, and substitute 
=
�x� �with x�
� denoting
the inverse of 
�x�� in Eq. �A2�,

f̃m��m� =
1

�
�


m−1,m


1,m �1 − 
�1−�

�1 − 
�2 + 2
�1 − cos��m��
Dm�x�
��d


�A3�

=
1

�
�

Lm

Hm z1−�

z2 + 2�1 − z��1 − cos��m��


Dm�x�1 − z��dz

=
1

�m
��
�

Lm/�m

Hm/�m y1−�

y2 + 2
�m

2 �1 − cos��m���1 − y�m�


Dm�x�1 − y�m��dy , �A4�

where 
=1−z and z=y�m. Since �m→0 when Hm /�m→�,
and 
�x� is a decreasing function, x�1−y�m�→0. By as-
sumption �12� we also have that

Dm�x�
mAm

=
a�x��1 − 
�x���

�
��x��
�1 + 
�x�� →

x→0

2C .

Since Dm�x� / �mAm� is bounded by assumption, the integrand
of Eq �A4� is bounded by a multiple of y1−� / �y2+1� for
�	1/4, and the dominated convergence theorem gives that

�m
� f̃m��m�
mAm

→
m→�2C

�
�

0

� y1−�

y2 + 1
dy .

This implies that f̃m����1/�m
� for Lm���Hm, according

to Definition 1, where we choose cm=� / �2CmAm�0
� y1−�

y2+1
dy�.

Now we show that fm��� also is proportionally
asymptotic in log scale to 1/�� for Lm���Hm. Specifi-
cally, we show that the approximation in Eq. �A2� converges
in the sense,
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cm�m
� �fm��m� − f̃m��m�� →

m→�

0,

for all sequences ��m� such that Lm /�m→0 and
Hm /�m→�. Of course, for fixed �, the sum fm��� will con-

verge to the integral f̃m���. We will show that the distance
decreases when m→�, even when � varies. The integrand

of f̃m��� in Eq. �A2� can be written as

Im�x;�� =
�1 − 
�x��1−��
��x��

�1 − 
�x��2 + 2
�x��1 − cos����



mAma�x��1 − 
�x����1 + 
�x��

�
��x��
. �A5�

We need to divide the interval of integration into three parts.
In the two first parts we may use the common integral con-
vergence test for series, which states that the distance be-
tween the integral and the sum is bounded by the maximum
term in the series when the integrand is monotone. In the
third part the distance does not depend on �.

Note that �m→0, so it is sufficient to consider the case
when ��0. First, consider the part of the interval of inte-
gration where x�0, and use that 
�x�=1+
�r��0�xr /r !
+O�xr+1� for some r�1. Then 
��x�=r�
�x�−1� /x+O�xr�,
and according to condition �12�,

Im�x;�� �
�1 − 
�x��1−��
��x��

�1 − 
�x��2 + �2 2CmAm

�
�1 − 
�x��2−�

�1 − 
�x��2 + �2

2CmAmr

x

� 2CmAmr
�− 
�r��0�/r!�2−�x�2−��r−1

�− 
�r��0�xr/r!�2 + �2 . �A6�

For �2−��r�1, the right-hand side of the last line in Eq.
�A6� is decreasing. For �2−��r�1, the right-hand side of the
last line in Eq. �A6� is increasing for x� �0,x�

� �, where the
maximum point x�

� is given by

− 
�r��0�
r!

x�
�r =��2 − ��r − 1

�r + 1
� = K� . �A7�

�This representation will be useful later.� When � is small,
x�

� is also small. Moreover, when x�
� 	x�1, the last part of

Eq. �A5� is approximately constant, and I�x ;�� behaves like
1/ �x�1−
�x����, and is decreasing for x� �x�

� ,xc� for any r
and �. The value of xc depends on the last factor of Eq. �A5�.
For x� �xc ,1�, the dependence of the distance on � vanishes
when �→0. Hence we divide the interval of integration into
the intervals �0,x�

� �, �x�
� ,xc�, and �xc ,1�, where we set x�

�

�0 if �2−��r�1.
The integral test for series gives that for x� �0,xc�, the

distance between the sum and the integral is bounded by
max�Im�1/m ;�� /m ,2Im�x�

� ;�� /m�. Consequently,

cm�m
� �fm��m� − f̃m��m�� � cm�m

��Im�1/m;�m�/m

+ 2Im�x�m

� ;�m�/m + RmmAm� ,

where �Rm� is a sequence decreasing independently of �m,

and cm=� / �2CmAm�0
� y1−�

y2+1
dy�. The two first terms on the

right-hand side also goes to 0: From Eq. �A6�,

lim
m→�

cm�m
�Im� 1

m
;�m� 1

m
= lim

m→�
2cmCmAmr

�1 − 
1,m�2−�

�m
2−� = 0,

lim
m→�

cm�m
�Im�x�m

� ;�m�
1

m
= lim

m→�
2cmCmAmr

�m
2−�

2�m
2−�

1
m

x�m

� = 0.

�A8�

We use that 
�1/m�=
1,m, and �1−
1,m� /�m→0. In Eq.
�A8�, �1/m� /x�m

� →0, since �1−
�1/m�� / �1−
�x�m

� ��
��1−
1,m� / �K�m�→0 from Eq. �A7�, and 
�x� is decreas-
ing in x. Hence we have showed that the integral approxi-
mates the sum in an appropriate way, and fm����1/�� for
Lm���Hm.

The asymptotic behavior of fm��� for 0���Lm and
Hm���1 is easy to show, since all the terms in the spec-
tral density in �7� have the desired asymptotic behavior on
these intervals.

Proof of Corollary 1. We apply results from the proof of
Theorem 1. The spectral density of an AR1-process is given
by �10�. The aggregation of such processes in �14� with rates
having probability density h��� has spectral density

f��n� =
�2

�
�

0

1 h���
1 + �2 − 2� cos��n�

d�

=
�2

�
�

0

1 �1 − ��1−�

�1 − ��2 − 2��1 − cos��n��
h���

�1 − ��1−�d� .

Since h��� / �1−��1−�→C as �→1, Eqs. �A3� and �A4� in
the proof of Theorem 1 give that

�n
�f��n� →

C�2

�
�

0

� y1−�

y2 + 1
dy

for any sequence �n→0. Consequently, f����1/�� for
0���1.

Proof of Corollary 2. We apply results from the proof of
Theorem 1. The spectral density is given by

fn��n� =
�2

�cn
�

�n
min

�n
max �1 − ��1−�

�1 − ��2 − 2��1 − cos��n��
h���

�1 − ��1−�d� ,

where cn=�
�n

min
�n

max

h���d�. From Eqs. �A3� and �A4� in the

proof of Theorem 1,

�n
�cnfn��n� →

C�2

�
�

0

� y1−�

y2 + 1
dy ,

for all sequences ��n� which satisfy �1−�n
max� /�n→0 and

�n / �1−�n
min�→0.

Proof of Lemma 3. Feller �22� presents a proof for the
more general cases, where the probability of moving to each
of the neighboring states can be different. He also states the
result for general cyclical matrices which includes our PCyc.
It is straightforward to verify that the eigenvectors and sta-
tionary distributions are correct.
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Proof of Proposition 1. We apply Theorem 1. 
�x�
�
RW�x�=cos��x�. Since �ek

TBe j�2 is 1 for j=k and 0 else-
where for reversible chains,

ak,m = �ek,m
T Bg�2 = ��ek,m

RW�TB

j=1

m−1

bj,me j,m
RW�2

= bk,m
2 ,

and ak,m=a�k /m� in �20� by the choice of bk,m. In Theorem 1
Am�1 and �12� is satisfied with C=1 since a�x� in �20�
satisfies �13�. That a�x��1+
RW�x���1−
RW�x��� / �
RW��x��
=1+
RW�x� is bounded, follows straightforwardly.

Proof of Proposition 2. We apply Theorem 1. 
�x�
�
RW�x�=cos��x�. For even k, ak,m=Ama�k /m�, with Am

=1/m2 and a�x��2. For odd k, ak,m=0, but this will only
affect the Rieman sum approximation in the proof of Theo-
rem 1 by a factor of 2. Finally, condition �12� is satisfied in
�24� with C=�2/�. That a�x��1+
RW�x���1
−
RW�x��0.5 / �
RW��x��=2�1+
RW�x� /� is bounded, follows
straightforwardly.

Proof of Proposition 3. We apply Theorem 1. ak,m
=AmaCyc�k /m�, with Am�1 and aCyc�x�=1/ �4 sin2��x��.

�x��
Cyc�x�=cos�2�x�. 
Cyc�x� is only decreasing for
x� �0,0.5�, but notice that both 
k,m

Cyc=
m−k,m
Cyc and ak,m

Cyc

=am−k,m
Cyc . Hence in the Rieman sum approximation in the

proof of Theorem 1, it is sufficient to multiply with a factor
of 2 and integrate over x� �0,0.5�. On this interval 
Cyc�x� is
decreasing and invertible. Finally, condition �12� is satisfied
in �25� with C=1/ �4�2��. That a�x��1+
Cyc�x���1
−
Cyc�x��1.5 / �
Cyc��x��=�1+
Cyc�x� / �4�� is bounded, fol-
lows straightforwardly.

Proof of Proposition 4. We apply results from the proof of
Theorem 1. The relation between the eigenvalues and the
proposal distribution of a MIS with uniform stationary dis-
tribution is given in �26�. As m→�, this equation turns into


MIS�x� = 1 − Fq�x� − q�x��1 − x� ,

where q�x� is a probability density and Fq�x� is the corre-
sponding cumulative distribution. Both are differentiable
functions if 
MIS�x� is differentiable. Differentiating on both
sides, we get �31�. The proposal densities in �32� and �33� are
the solutions of �31�, when 
MIS�x� is one of the differen-
tiable functions �29� and �30�, respectively. Moreover,
ak,m�Ama�k /m� for large m, where Am=1/m, and a�x�
= �1−x�2 /4.

Now, a�x�= �
��x�� / �1−
�x���, and a�x�= �
��x�� / ��1
−
�x����1+
�x��� for MIS1 and MIS2, respectively. The
spectral density of the limiting MIS-sequences with

MIS�0�=
n

� and 
MIS�1�=0 is given by Eq. �A2�, and it be-
comes

fn��� =
1

�
�

0

1 a�x��1 − 
2�x��
�1 − 
�x��2 + 2
�x��1 − cos����

dx

=
1

�
�

0


n
� �1 − 
�1−�

�1 − 
�2 + 2
�1 − cos����
D�
−1�
��d
 ,

where D�
−1�
��=1+
 for MIS1 and D�
−1�
��=1 for
MIS2. From Eqs. �A3� and �A4� in the proof of Theorem 1,
fn����1/�� for �1−
n

�����1.
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